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Abstract Among all remote sensing missions, the Gravity Recovery and Climate Experiment (GRACE)
was unique as it measured the change in total water content across all terrestrial water storages (TWS)
including subsurface, deep soil moisture, and groundwater. However, its coarse resolution is a major
challenge for practical applications. Ensemble Kalman filters (EnKFs) are useful tools to combine
observations with models to reduce prediction errors. But due to the coarse resolution of the GRACE
products, the EnKF does not work well in its usual form. Accordingly, different EnKF structures have been
proposed and employed but a comparison between them has not yet been attempted. Here we assessed
these structures using a synthetic problem. Alternative structures were formed using different increment
calculation and updating strategies, observation operators, and the types of observation fed to the filter.
It was found that all available structures led to an improvement in model performance when measured
against a synthetic reference. However, the degree of improvement was strongly dependent on the
assimilation strategy. Assimilating absolute TWS values (the summation of the TWS anomalies and an
unbiased baseline) gave the best model performance when combined with an increment calculation
strategy in which the increments are calculated and applied to all days of the month. However, without
an unbiased baseline, assimilating TWS changes still leads to an acceptable improvement in model
performance. Among the observation operators, those that predict the observations as an average of
multiple days had the best performance.

1. Introduction

The world’s available freshwater supply is rapidly decreasing, with around 80% of the world’s population expe-
riencing high levels of water security threats (Vörösmarty et al., 2010). Consequently, detailed information
on water availability is crucial for effective water management. Different water storages including subsur-
face, deep soil moisture, and groundwater make up the important water resources. Knowledge about these
storages is critical to providing useful insights into atmospheric processes, climate change, agriculture pro-
ductivity, and flooding (Rodell et al., 2004; Tapley et al., 2004). For instance, groundwater is a crucial water
supply in some regions and soil moisture has considerable effects on the performance of general circulation
models (Entekhabi et al., 1996; Robock et al., 1998; Tapley et al., 2004). Therefore, accurate estimates of the
water content of these storages can provide a better understanding about the current state of the hydro-
logic cycle, improve its future predictability, and consequently help water managers, farmers, and many other
stakeholders. However, due to the high heterogeneity, water resources estimation can be challenging (De
Lannoy & Reichle, 2016; Hirschi et al., 2014).

To estimate the water content of different water stores, two main approaches exist: observation and hydro-
logical simulation (Tapley et al., 2004). The advance of remote sensing technology has increased our ability
to observe water availability at global scale. Among all remotely sensed observations the Gravity Recov-
ery and Climate Experiment (GRACE) mission is the only satellite to provide overall information on the total
water content in the form of terrestrial water storage (TWS) change over time. Other water-related missions
just observe moisture in the top few centimeters of soil, the water level in lakes, or the snow water equiva-
lent. Therefore, the GRACE mission provides a unique opportunity to explore the Earth’s available water with
more insight (Rodell et al., 2009; Strassberg et al., 2009; Syed et al., 2009; Tang et al., 2010; Wang et al., 2011;
Yeh et al., 2006). However, the coarse temporal (monthly) and spatial (∼150,000 km2) resolution, together with
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the vertical aggregation (Rowlands et al., 2005; Swenson & Wahr, 2006), complicate the use of the GRACE TWS
retrievals (Girotto et al., 2016).

The hydrological modeling approach for estimation of TWS suffers from inevitable structural and random
uncertainties. Errors in the model prediction are propagated at each time step, which can severely affect the
accuracy of the final TWS estimates (Ellett et al., 2006).

The ensemble Kalman filter (EnKF) is a very useful data assimilation (DA) tool to reduce the model errors at
each time step by updating the model state variables (Evensen, 2003). DA methods have been successfully
applied in hydrologic modeling to assimilate observations from various sources into the model, including
soil moisture (e.g., Aubert et al., 2003; Crow & Ryu, 2009; Houser et al., 1998; Pauwels et al., 2001; Reichle
et al., 2008, 2004), snow water equivalent (e.g., Barrett, 2003; Slater & Clark, 2006; Sun et al., 2004), stream-
flow (e.g., Clark et al., 2008; Lee et al., 2011), groundwater levels (e.g., Hendricks Franssen et al., 2017),
microwave radiances (e.g., Dechant & Moradkhani, 2011), and TWS (e.g., van Dijk et al., 2014; Ellett et al., 2006;
Forman & Reichle, 2013; Forman et al., 2012; Girotto et al., 2016, 2017; Houborg et al., 2012; Khaki, Ait-El-Fquih,
et al., 2017; Khaki, Hoteit, et al., 2017; Khaki, Schumacher, et al., 2017; Kumar et al., 2016; Li & Rodell, 2015;
Li et al., 2012; Smith, 2013; Tian et al., 2017; Zaitchik et al., 2008). Therefore, assimilating the GRACE TWS
retrievals into a hydrological model yields more reliable water storage estimates in which the drawbacks of
both approaches are mitigated.

To achieve the most accurate results possible, an optimized application of the EnKF is needed. However, due
to the temporally and spatially coarse resolution and vertical aggregation of the GRACE TWS retrievals, the
regular EnKF structure cannot be used. A number of previous studies have proposed alternative customized
EnKF structures for the GRACE TWS retrievals assimilation. The earliest approach was a two-step assimilation
scheme employed by Zaitchik et al. (2008) to assimilate the GRACE TWS retrievals into the Catchment Land
Surface Model. At each time step, the model was integrated to calculate the forecast state variables, observa-
tion predictions, and monthly averaged analysis increments. The increments were then broken down to the
number of days and gradually added to the state variables to update the model prognoses. This approach
has also been used in other studies (Forman & Reichle, 2013; Forman et al., 2012; Houborg et al., 2012; Kumar
et al., 2016; Li & Rodell, 2015; Li et al., 2012). Alternatively, different studies applied a regular EnKF in which
just the state variables of the last day of the month were updated (Eicker et al., 2014; Schumacher et al., 2016;
Su et al., 2010; Tangdamrongsub et al., 2015).

Girotto et al., (2016, 2017) proposed another DA structure. The increments for each state variable in each day
are calculated using the state variables resulting from an initial model integration. These increments are then
averaged through the month, and the state variables of the first day are updated using monthly averaged
increments. The second run then propagates the updates into the remaining days of the month. Girotto et al.
(2016) compared the proposed structure against two previously mentioned methods and concluded that the
proposed method better reflects the submonthly variation in the TWS and its components. Further, two other
approaches have been employed in other experiments. van Dijk et al. (2014) proposed a DA structure to merge
the GRACE TWS retrievals and off-line products of several hydrological models on a monthly time step. Tian
et al. (2017) employed an EnKS approach to jointly assimilate the GRACE TWS retrievals and SMOS-derived soil
moisture into the Australian Water Resources Assessment-Land (AWRA-L) model. A notable common point
in all published studies is the challenge of correctly assimilating the GRACE TWS retrievals, which are TWS
anomalies. These anomalies cannot be directly assimilated into the model because it is not possible to predict
the TWS anomalies without having a baseline (section 3.3.3). Therefore, in the above mentioned studies, these
anomalies were converted to absolute values by adding a TWS baseline prior to the assimilation.

Although a number of different customized EnKF structures have been developed to assimilate GRACE TWS
retrievals, a comprehensive comparison has not yet been conducted. Therefore, the first objective of this study
was to compare these structures in a synthetic problem. To do so, two paradigms could be used. The structures
of EnKFs can be considered as an integrated approach which cannot be decomposed. Then, these methods
can simply be compared based on their performances. Conversely, a more complicated strategy is to consider
these structures as modular frameworks. In this approach, each component of the structures could be ana-
lyzed separately. This leads to a better understanding of the structures. Moreover, as each structure has its
own strengths and weaknesses, using a modular comparison provides an opportunity to improve the perfor-
mances of the structures by combining components from different structures to achieve a more sophisticated
EnKF structure. The latter paradigm helps to define a generic and modular EnKF framework with a number
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Figure 1. The top panel is the (a) study area map and its location, and the bottom panels are temporally averaged of
unperturbed daily precipitation for (b) the open loop and data assimilation and (c) truth over a 4-year period (2007 to
2010).

of different alternative for each module. Instead of developing new structures, this framework, in addition to
providing a sufficient understanding of the characteristics of each module, enables us to extract the optimum
EnKF structure matching the modeler interests. In the current study, the second paradigm was used to com-
pare the different EnKF structures. In general, the differences among the TWS assimilation approaches from
previous studies are limited to two major components of the EnKF, the observation operator (mapping the
modeled state variables onto GRACE observation space) and the Increment Calculation and Updating Strategy
(ICUS) including the state variable selection approach and the increment implementing method. Therefore,
these two components of the EnKF were considered as modules of the generic EnKF structure in this study.

Moreover, as was discussed, the GRACE anomalies were converted to absolute values by adding a baseline
TWS. This baseline is mostly estimated based on a single baseline run with the assumption of an unbiased
model. However, this assumption could be questionable in many cases so an alternative solution has been
sought. Therefore, the second objective of this study was an alternative approach to assimilating the TWS
anomalies without conversion to the absolute values. Instead, the TWS changes were used as the observation
source. The TWS anomalies are the TWS absolute values minus the baseline, and the TWS changes are the aver-
age TWS absolute value of one month minus the average TWS absolute value of the previous month (more
details are provided in section 3.3.3). A synthetic problem was used to compare the different approaches. The
main reason for using a synthetic problem was the fact that the correct state variables and their uncertainty
are known and controllable. Therefore, it provides a better insight into the opportunities and obstacles of the
different approaches.
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To address the study objectives, different combinations of the DA structures were tested to assimilate syn-
thetic GRACE observations into a spatial hydrological model (AWRA-L). Because of the large number of
assimilation structures that have been used, it is not clear which method provides the best results. This paper
aims to provide an answer to this question. The study was performed in the upper Murrumbidgee catch-
ment with a spatial resolution of 0.01∘. The performance was evaluated by comparing the model results to a
synthetic truth from an off-line model run.

2. Study Area and Model Description
The eastern half of Murrumbidgee catchment has been selected as the study area because of the availability of
a large number of gauged subcatchments and the relative abscence of regulated streams (unlike the western
part). This catchment is a part of the Murray Darling basin, located in southeastern Australia and covering
approximately 3.5 × 105 km2 of land (Figure 1a). The region is mostly mountainous with elevations ranging
from over 2,250 m in the eastern ranges to approximately 250 m with a prevailing east to west slope. The
precipitation ranges from 500 to 1,400 mm annually (Green et al., 2011).

The AWRA-L version 0.5, which is part of the AWRA system (van Dijk, 2010), has been selected as the hydrolog-
ical model for the current study. The AWRA-L is a grid-distributed model simulating the streamflow, surface,
shallow and deep soil moisture, and groundwater and vegetation water contents. This model has relatively
few parameters compared to fully process-based spatially distributed hydrological models (which can have
dozens of parameters per grid cell) and has been proven to work well in Australia (van Dijk et al., 2011, 2012;
Renzullo et al., 2014).

In the AWRA-L model, two hydrological response units for each pixel are defined by default dividing the soil
water and heat flux processes into two parts representing shallow and deep rooted vegetation. Conversely,
the groundwater and surface water fluxes are simulated in an integrated process per pixel. It should also be
noted that no lateral water distribution is considered between pixels. Water states are simulated in a number
of different storages including surface soil moisture (S0), shallow soil moisture (Ss), deep soil moisture (Sd),
groundwater (Sg), runoff (Sr), snow (Ssn), and vegetation (Sv) water content. The vertical water distribution
among the state variables is controlled by the fluxes including infiltration, soil evaporation, drainage, and root
water uptake. The AWRA-L daily temporal resolution is fixed, but its spacial resolution is adjustable. A 0.01∘

spatial resolution is selected for the current study.

The model inputs for this study are climate data (minimum and maximum temperature, precipitation, and
radiation) from the Terrestrial Ecosystem Research Network Ecosystem Modelling and Scaling Infrastruc-
ture at 0.01∘ resolution. The wind speed was obtained from the Commonwealth Scientific and Industrial
Research Organisation at 0.01∘ resolution (McVicar, 2011). The land cover map (Lymburner & Australia, 2011)
was originally available with a 250-m resolution and upscaled to a 0.01∘ resolution. The model was cali-
brated using the observed streamflow data of 24 gauge stations from 2009 to 2010 (available online at
http://realtimedata.water.nsw.gov.au/water.stm) using the Patient Rule Induction Method Parameter Estima-
tion (PRIM-PE; Shokri et al., 2017). This method has the capability of identifying regions of the parameter
space containing the parameter sets with good-enough (i.e., better than a threshold) performances. Using the
PRIM-PE, all good-enough parameter sets were detected. However, since the model was not calibrated for the
TWS components (including soil moisture and groundwater), different parameter sets could provide different
estimates of the TWS. In the current study, to mimic the differences between real-world processes and the
model, two good-enough parameter sets were employed. The first was used for the generation of the syn-
thetic truth and the second for the DA. It should be noted that since the connection between groundwater
and deep soil moisture was not calibrated, the model could not distinguish these two stores. Therefore, the
deep soil moisture and groundwater were considered as a single store.

3. Methodology
3.1. Synthetic Experiment
The main objective of this study is to find an optimal EnKF structure for assimilating the GRACE TWS
retrievals into a fine resolution hydrological model. To do so, the key structural features (hereafter referred
to as structural variables; detailed description is provided in section 3.3) of the EnKF were first defined.
All different possible EnKF structures formed by combining the structural variable alternatives were then
examined in a synthetic setting.
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Figure 2. Schematic of the synthetic study. The top panel is the structure of the synthetic problem consisting of three
steps: step (1) generating the synthetic observation, step (2) generating the perturbed forcing data, and step (3) using
different DAs or OL integrations to produce state and flux variables. The bottom panel is the DA system part of top panel
with more details. AWRA = Australian Water Resources Assessment; TWS = terrestrial water storage; DA = data
assimilation; OL = open loop.

The design of the synthetic problem in this study is similar to the twin experiment in Forman and Reichle
(2013). Figure 2 shows its conceptual framework which consists of three main steps. As a first step, a reference
forcing data at 0.01∘ spatial and daily temporal resolution were generated. These were used to generate the
synthetic TWS retrievals, with a monthly time step and a single value for the entire catchment. This process
was started by adding white noise to the precipitation, minimum and maximum temperature, and radiation
maps to generate the reference forcing data reflecting the errors in the forcing data estimation process. Those
errors are temporally and spatially autocorrelated and cross-correlated, so the noise fields were generated
likewise (see section 3.5). A truth estimate of the hydrological flux and state variables (e.g., soil water content)
was then produced by forcing AWRA-L with the true forcing data. This simulation used different parameters
values from those used in the DA and open loop (OL) simulations. Both of these parameter sets were selected
from a good-enough region in the parameter space (Shokri et al., 2017). By vertically integrating the state
variables relating to different components of the TWS, a true high-resolution product of the TWS was gener-
ated. The synthetic coarse-resolution observations were produced by spatial averaging of the model results.
The temporal average at days 5, 15, and 25 were then calculated, mimicking the GRACE observation system.
Observation noise, representing the errors in the real GRACE TWS retrieval estimation process, was then added
to these averages. The upscaling procedure for the true TWS synthesizing was adopted from Zaitchik et al.
(2008). The observation noise was assumed to be temporally (Forman et al., 2012; Su et al., 2010; Zaitchik et al.,
2008) uncorrelated. Based on the synthetic observation area (∼ 3.5 × 105 km2), the standard deviation of the
noises was assumed to be 20 mm, which is identical to the standard deviation used in Zaitchik et al. (2008),
Su et al. (2010), and Forman and Reichle (2013) with a similar resolution.
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Table 1
Structural Variable List

Structural variables Alternatives

Increment calculation Increment calculations ICUS 1.y (Zaitchik et al., 2008)

and updating strategies ICUS 2.y (Su et al., 2010)

(10 alternatives, excluding the ICUS 3.y (-)

ICUS 1.3 and ICUS 3.3)a ICUS 4.y (Girotto et al., 2016)

Updating strategies ICUS × .1 (Girotto et al., 2016)

ICUS × .2 (Zaitchik et al., 2008)

ICUS × .3 (Tian et al., 2017)

Observation operator H1 (-)

(four alternatives) H2 (Su et al., 2010)

H3 (Zaitchik et al., 2008)

H4 (Tian et al., 2017)

Observation type TWS absolute values (all previous studies)

(two alternatives) TWS changes (-)

Previous absolute observationb PAO 1 (-)

(two alternatives) PAO 2 (-)

State variable statusb SVS 1 (-)

(two alternatives) SVS 2 (-)

Note. A sample (the earliest) of using each structural variable is mentioned in front of that. The variables
followed by a dash (-) for the first time were used in the current study. ICUS = Increments Calculation and
Updating Strategy; TWS = terrestrial water storage; PAO = previous absolute value; SVS = state variable status.
aThe ICUS alternatives are formed as the combinations of two different subvariables. In total, from 12 possible
combinations, 10 are feasible to be employed in the EnKF structure. bJust applicable to assimilation of TWS
changes (and not TWS absolute values).

After generating the maps of true state and flux variables and the synthetic observations, the second step
consisted of generating the ensemble members. Each member was generated using a set of perturbed forcing
data that reflect the errors in estimation process. In this study, it was assumed that these errors were identified
correctly and accurately. Therefore, a number of noise fields with the same characteristics as the noise field
were employed to perturb the forcing data used to generate the true forcing data.

The third and final step established the assimilation and the OL runs using the perturbed forcing data and the
original (unperturbed) forcing data, respectively. The resulting flux and state variable estimates were com-
pared to the true state and flux variables. This comparison assesses the ability of each approaches to reproduce
the true variables.

3.2. Validation
The validation was performed by comparing the results of the DA runs to the synthetic truth. To do so, the
bias and root-mean-square error (RMSE) were calculated and reported. The bias was computed as the average
of the pixel errors (OL and DA minus truth), and RMSE was calculated as the square root of average squared
pixel errors at each time step. The correlation coefficient (R) was also analyzed. R is mathematically related
to bias and RMSE, and therefore, results are not separately discussed (but they are provided in the support-
ing information). Four different sets of synthetic observations were generated, to avoid drawing erroneous
conclusions caused by the randomness in the process. For the same reason, each DA structure was applied
three times to each set of synthetic observations. Thus, in total, each DA structure was applied 12 times. The
distribution of the performance metrics including mean, median, and range were then analyzed.

3.3. DA Framework
As explained in section 1, the overarching objective of this study was to compare the modules of different cus-
tomized EnKFs for assimilating the GRACE TWS retrievals. In this study, by investigating the existing EnKFs, the
common and noncommon parts were detected and a generic and modular EnKF framework was designed.

The bottom panel of Figure 2 shows a flowchart of the DA strategy applied. The start is a perturbation of the
forcing data (for more detailed descriptions see sections 3.1 and 3.5) in which a number of ensemble members
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were generated. Then, to generate realistic initial states for each member, the following model initialization
strategy was used. The warm-up (spin-up) consisted of two steps. First, by repeating the simulation of entire
period 10 times (from 2006 to 2010) using the unperturbed forcing data, a reasonable estimate of the initial
state was obtained. Then, each ensemble member was run for a further warm-up period of 2 years (from
2006 to 2007) using the perturbed forcing data to obtain initial states with a sufficient spread. The initial state
variables after the warm-up period are denoted by Xj−

T ,1 for the jth member. The main assimilation cycle (from
2008 to 2010) was then started by propagating the ensemble members for 1 month. During this step the state
variables including time series of water storages in each pixel were generated. These are denoted as Xj−

T . This
state vector thus consists of the water storages for all days of the month and every model grid in the domain.

The observation operator was then used to convert the state variables to the observation prediction for each
member. The observation operator is one of the structural variables that was examined in the current study.
Therefore, different alternatives were tested (see section 3.3.1). The next step of the assimilation procedure
was the update step, which includes the calculation and implementation of the increments to the predicted
state variables (Xj−

T ). As different approaches were applied for this step, in this study it was considered as
another structural variable. Different alternatives for this structural variable are described in section 3.3.2.

Previous studies performed a prior transformation to convert the TWS anomalies to the TWS absolute val-
ues by adding an estimated baseline (in most cases a long-term OL simulation). Here the performance of a
new approach was evaluated against the transformation approach. This new approach assimilated the TWS
changes into the model instead of the TWS absolute values, to avoid possible errors from baseline estimation
(see section 3.3.3 for more details). So the observation type (absolute or change) was the third structural vari-
able. To find the best DA structure, the effect of all different combinations of these structural variables was
investigated. Table 1 shows a list of these structural variables.

3.3.1. Observation Operators
Three different observation operators were found in the literature. These operators as well as a new one (as
a benchmark) were recoded and redesigned to enable them to be used interchangeably in the generic EnKF
structure.

The observation operators are used to map the state variables onto the observation space. Hydrological mod-
els usually calculate the components of the TWS as separate state variables in a number of spatiotemporal fine
grids. Therefore, the observation operator for assimilation of the TWS has to aggregate and upscale the TWS
components. For this purpose, the spatial upscaling was performed by averaging the TWS of the contributing
pixels. For the temporal upscaling, four different approaches (here they are referred as H1 to H4) were used.
Equation (1) is a generic formulation of these observation operators:

M(Xj
T ) =

1
Npixel

1|D|
Npixel∑
k=1

(∑
d∈D

TWSj
T ,d,k

)
, (1)

where Npixel is the number of pixels in the observation grid, D represents the set of days, and |D| is the number
of days that are averaged. TWSj

T ,d,k is the TWS of the kth model pixel at the dth day of the Tth monthly time
window of the jth member.

In operator H1, the spatially averaged TWS of the first day was considered as the representative of the entire
month TWS (D = {1}; {.} is set notation). We did not find any examples of this approach in literature. Operator
H2 (adopted from Su et al., 2010) is similar to H1 but uses the TWS of the last day as the representative (D =
{Nday}). Conversely, operators H3 (adopted from Zaitchik et al., 2008) and H4 (adopted from Tian et al., 2017)
use an average of multiple days instead of a single day. More specifically, H3 uses D = {5, 15, 25} and H4 uses
D = {1, 2,… ,Nday}. A list of the observation operator alternatives is provided in Table 1.

Each of these observation operators which has been applied in the previous studies has its own philosophy.
H2 assumes that the GRACE TWS retrievals are produced once a month (the last day of the month). Then,
following the regular EnKF structures, whenever a new observation becomes available, the state variables of
exactly that day should be updated so H2 uses the last day of the month to predict the observation. One can
argue about the assumption that the observations belong to the last day of the months. Therefore, H1 is used
in this study by transforming this approach to another extreme format in which it is assumed that the GRACE
TWS retrievals belong to the first day of the month. These approaches seem to be a bit unrealistic as the GRACE
TWS retrievals, unlike most of the other satellite products, are not snapshots of the water states. Conversely,

SHOKRI ET AL. 8937



Water Resources Research 10.1029/2018WR022785

the GRACE provides estimates of water state changes during a time step. However, even with this imperfec-
tion, H2 and H1 provide some computation simplicity in the estimation process. To overcome the drawback of
the H2 and H1, H3 calculates the TWS as an average of 3 days to mimic approximately three overpasses of the
GRACE during a month. Finally, H4 uses an average of TWS of all days of the month to optimally simulate the
GRACE TWS retrievals using state variables of models to potentially increase the accuracy of the observation
prediction, specifically when it is used along with a smoother to update all state variables during the month.
3.3.2. ICUS Alternatives
Previous studies used different ICUS. The ICUS is a part of the EnKF process which calculates the increments
and adds them to the state variables. These strategies can be decomposed into two main sections including
the increment calculation section and the section where increments are used to modify the state variables.
Three approaches of increment calculation and four updating strategies were found in the literature. These
were then recoded and redesigned to let them be used interchangeably in the EnKF framework. The following
describes them. The general equation to calculate the increments in the EnKF framework is

Δxj
T = KT [y

j
T − M(Xj

T )], (2)

in which yj
T is a vector that contains the perturbed observations, M(Xj

T ) is the simulated observation, and Kj
T

is the Kalman gain. T refers to the assimilation time window, and j indicates the ensemble member. As can be
seen in equation (2), the Kalman gain (KT ) is a matrix which converts the innovations (difference between the
observation and model prediction) into the state variable increments Δxj

T . It determines the relative weight
of the observation and model during the update step by adjusting the magnitude of increments based on the
error cross covariance between state variables and model observation predictions (CxM), the error covariance
of the model observation prediction (CMM), and the observation error covariance (Cyy). The formulation of the
Kalman gain is

KT = CxM.(CMM + Cyy)−1, (3)

in which CxM and CMM are calculated based on the ensemble simulation results and Cyy reflects the uncer-
tainty (or error) of the observations (Reichle et al., 2002). The KT and consequentlyΔxj

T can be calculated using
all state variables or alternatively just a subset. In the latter case the increments to update the excluded state
variables are not produced. This exclusion can occur in two situations: first, in case of some state variables are
not observable and second, to simplify the assimilation procedure by reducing the number of state variables.
In the TWS DA, the full state vector consists of the state variables of all pixels at all time steps within a month.
Using this full state vector defines an approach that behaves similar to a smoother. However, theoretically, it is
possible to assume that the increments of the state variables during a month are similar or can be estimated
using just a subset. Therefore, it is possible to exclude some of the days from the increment calculation process
and update the state variables just using the increment calculated from the remaining days. Recent studies
used different subsets for this purpose. In some studies (e.g., Zaitchik et al., 2008), the increments were calcu-
lated just for a single time step, mostly the first or the last day of the month. However, in other studies (e.g.,
Girotto et al., 2016), the state variables of multiple days were employed to calculate the increments. There-
fore, we tested four alternatives including the first day (ICUS1.y, adopted from Zaitchik et al., 2008); the last
day (ICUS2.y, adopted from Su et al., 2010); days 5, 15, and 25 (ICUS 3.y); and all days of the month (ICUS4.y,
adopted from Girotto et al., 2016).

After calculation of the increments, the next step was to add them to the state variables. In the previous
studies, a number of approaches were proposed. As it is difficult to assign the GRACE TWS retrievals to a spe-
cific instance, one of the main disagreements among different approaches is about the time step(s) during
the month which should be updated. Moreover, increments were applied to the state variables differently.
Different strategies were adopted for this step and summarized in Table 1.

(1) In the first strategy, daily averaged increments were calculated and then added to the state variables
of the first day of the month. Then, in order to obtain the updated value for the remaining time steps,
the model was reinitialized and the current month resimulates using the updated initial conditions. This
way, the calculated increments were propagated gradually through the month (ICUSx.1, adopted from
Girotto et al., 2016).

(2) The second strategy is similar to the first but with the increments divided by the number of days and added
to the state variables during the second run on a daily basis (ICUSx.2, adopted from Zaitchik et al., 2008).
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Figure 3. Schematic of the SVS and PAO structural variables. (a) Overview of the daily TWS absolute values from the
forecast and update steps. (b) The temporally upscaled TWS for the forecast and update steps. The green lines indicate
the TWS average values. As it is indicated in (b), to calculate the TWS change for Member 2 (blue), four approaches can
be adopted. (c) The difference between the TWS anomaly and TWS change. SVS = state variable status; PAO = previous
absolute value; TWS = terrestrial water storage.

(3) The third strategy is a direct approach, in which the increments that were calculated for each day were
directly used just to update exactly that day (ICUS x.3, adopted from Tian et al., 2017). The advantage
of this method is the fact that a resimulation is not required, which can save a considerable amount of
computational effort. This implies that the state variables of the last day of the month have to be part
of increment calculations. Hence, it can just be used with the second and fourth increment calculation
strategy (ICUS2.3 and 4.3).

3.3.3. Observation Types
The observation operator role is to provide estimates of observations using the model state variable. The
difference between the model prediction and observation (innovation) can then be used for the increment
calculation. It should be noted that the observed values and the outputs of the observation operator should
be the estimates of exactly the same variable. The GRACE retrievals are TWS anomalies (Figure 3c), so to
directly assimilate them into a model, the observation operator must be able to predict the TWS anomalies
using model state variables. Therefore, a TWS baseline is also required to convert the TWS absolute values to
the TWS anomalies which are comparable with GRACE-based products (e.g., Schumacher et al., 2016, used
this approach). Another alternative is to convert the observed TWS anomalies prior to the assimilation process
using the TWS baseline (e.g., Forman et al., 2012; Girotto et al., 2017; Zaitchik et al., 2008, used this approach).
It can be argued that both of these strategies are effectively the same.

As mentioned in section 1, the baseline in previous studies was estimated as an average of TWS in a long-term
OL model integration. However, if the unbiased model assumption is not fulfilled, the use of this long-term
average can lead to biased model results. To overcome this problem, a new approach is proposed here.

In this new approach, the observation operator was redesigned to generate the TWS changes (as the dif-
ference of TWS absolute values of two consecutive months) and the observed TWS anomalies (in this study
synthetic TWS retrievals) were transformed to TWS changes. The changes were calculated between two con-
secutive months to make them consistent with the GRACE mission. In this way, both TWS absolute values (from
model outputs) and the TWS anomalies (from observation) could be converted to estimates of exactly same
value without the need for any external source of information (i.e., a baseline). This approach can be inter-
preted as partitioning each state variables into a fixed (the initial state at first day of the month) and a variable
part (the change during the month and what the GRACE measures). Then, the variable part is updated using
the TWS changes. The change in the synthetic TWS anomalies and the modeled TWS in the EnKF are then
used as observation. Figure 3c shows the difference between the TWS changes and anomalies. The benefit of
using the TWS changes is the fact that both the model-based TWS absolute estimates and the GRACE-based
TWS anomalies can easily (without any external information) be converted to the TWS changes. The differ-
ence between these changes can then be used for increment calculation. However, the observation operator
should be modified to reflect the difference between the TWS absolute values of the current and previous
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time steps. The observation operator can be formulated as

MC(X
j
T ) = M(Xj

T ) − MT−1, (4)

in which MC(X
j
T ) is the observation operator of the TWS change and MT−1 is the TWS absolute value estimate of

the previous time step. In this equation M(Xj
T ) can be calculated from equation (4). However, multiple options

exist to calculate MT−1. As shown in Figure 3b, different estimates of TWS absolute value are available. Either
the TWS absolute value of the jth member from the forecast step, X−j

T−1 (dashed lines), or update step, X+j
T−1

(solid lines), can be considered as MT−1. Moreover, it could be argued that the average TWS estimates of all
members, (

∑j=1
J X+j

T−1)∕J or (
∑j=1

J X−j
T−1)∕J, might be a more accurate estimate of the previous TWS absolute

values. Based on this description, for the observation type of TWS change two more structural variables are
defined for assimilation of the TWS change, the state variable status (SVS) and the previous absolute value
(PAO). The SVS1 and SVS2 indicate the use of state variables from the forecast and update step, while PAO1
and PAO2 indicate the use of the jth member and average of all members, respectively.

3.4. Experiment Setup
The different alternatives of the EnKF structure were formed as the combination of five structural variables.
Considering 4 observation operators and 10 updating strategies for assimilating the TWS absolute values, 40
different structures were tested for the assimilation of the TWS absolute values. The number of alternatives for
the case of the TWS change assimilation was 160, as four different approaches exist to convert the predicted
absolute TWS to the change. All these experiments were conducted in two steps. First, the model was run for
24 months (from January 2006 to December 2007), after which the main DA process was applied to a 3-year
period (from January 2008 to December 2010).

Since there were a number of random processes in the analysis, including the generation of the noise and
perturbations in the EnKF, each structure was tested 12 times (4 different types observation noise × 3 trials
for each); the standard deviation of the noise did not change in each of these repetitions; only the value of
the random numbers was modified. The average of the performance metrics for each alternative was then
considered as its total performance indicator. In all experiments, based on a sensitivity analysis, the ensemble
size of 20 was selected. It was observed that by increasing the ensemble size to more than 20 members, the
predicted observation (observation operator results) standard deviation and consequently the final results did
not change significantly. This ensemble size is also consistent with previous studies on TWS assimilation. For
example Zaitchik et al. (2008) used 20, Forman et al. (2012) used 16, and Girotto et al. (2016) used 24 members.

The observation for the current study was considered to be a single synthetic TWS retrieval for the entire
catchment at a monthly time step. The full state vector (Xj

T ) consists of one surface water, one groundwater,
and six subsurface storages (including surface, shallow, and deep soil moisture for two hydrological response
units) per model grid per day, which leads to a vector size of 8,381,760 (for a 30-day month). However, as was
mentioned previously, the state vector for different approaches differs in the number of days that were used
in the increment calculation and updating step.

3.5. Generation of the Noise Fields
In order to generate a set of spatially and temporally autocorrelated and cross-correlated time series of the
noise fields, an algorithm based on a discrete complex-valued spectral representation is used, which is imple-
mented by the readily available fast Fourier transform. This algorithm has two main steps. First, the spatially
autocorrelated and cross-correlated fields are generated, then the temporal correlation is added using a
first-order autoregressive (AR (1)) process.

In the first step, generating J spatially autocorrelated and cross-correlated fields, each of the J random fields
may be expressed as a Fourier-Stieltjes integral

qj(x, y) = ∫
+∞

−∞
ei(𝜆x+𝜅y)dZqj

(𝜆, 𝜅), (5)

in which qj(x, y) is the value of jth random field at location x and y, i is
√
−1, 𝜆 and 𝜅 are the horizontal and

vertical wave numbers. This equation can be written in a discrete form

qj(xn, ym) =
∑

l,p

ei(𝜆l xn+𝜅pym)ΔZqj
(𝜆l, 𝜅p), (6)
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Table 2
Perturbation Parameters

Cross correlation

Standard Spatial Temporal Minimum Maximum

Parameter Typea deviation correlation correlation Precipitation temperature temperature Radiation

Precipitation M 0.50 2∘ 3 days n/a −0.8 −0.2 −0.1

Radiation M 0.30 2∘ 3 days −0.8 n/a 0.6 0.5

Minimum temperature A 0.30 (∘C) 2∘ 3 days −0.2 0.6 n/a 0.7

Maximum temperature A 0.25 (∘C) 2∘ 3 days −0.1 0.5 0.7 n/a

aThe symbols A and M indicate additive and multiplicative perturbations. n/a = not available.

in which, ΔZqj
(𝜆l, 𝜅p) is defined by

ΔZqj
(𝜆l, 𝜅p) =

√
Δ𝜅pΔ𝜆l × e

𝜆2
l
+𝜅2

p
𝜎2 × (cj.e), (7)

where 𝜎 is a parameter determining the spatial autocorrelation and

cj.e = [cj1, cj2,… , cjJ].[ei𝜃1,l,p , ei𝜃2,l,p ,… , ei𝜃J,l,p ]T , (8)

with 𝜃1,l,p, 𝜃2,l,p,… , 𝜃J,l,p uniform random uncorrelated fields between 0 and 2𝜋 that introduce random phase
shifts and cj1, cj1, ...cjJ are the elements of a J × J matrix

C =

⎡⎢⎢⎢⎢⎣
c11 c12 · · · c1J

c21 c22 · · · c2J

· · · · · · ⋱ · · ·
cJ1 cJ2 · · · cJJ

⎤⎥⎥⎥⎥⎦
, (9)

After generating the spatially autocorrelated and cross-correlated noise fields, in the second step an AR (1)
process was used to add the temporal autocorrelation according to

rj(xn, ym, t) = 𝜑j × rj(xn, ym, t − 1) + qj(xn, ym), (10)

in which𝜑j adjusts the temporal autocorrelation with the correlation specifications given in Table 2. The auto-
correlation settings are consistent with earlier studies (Forman et al., 2012; Girotto et al., 2016; Houborg et al.,
2012; Zaitchik et al., 2008), and the error cross correlations are considered to be same as the cross correlation
of the observed forcing data.

4. Results
4.1. OL Results
The most influential meteorological forcing variable in the AWRA-L model is the precipitation (Renzullo et al.,
2014). To provide a better understanding of the influence of precipitation uncertainty, the spatially averaged

Table 3
RMSE, Bias, and Spatiotemporal-Averaged Values of the TWS and Its Components for the OL Run

Variable RMSE (mm) Bias (mm) OL mean (mm) Relative bias (bias/OL mean)

S0 (surface soil moisture) 2.60 −0.46 10.79 −0.042

Ss (shallow soil moisture) 14.83 −6.25 21.30 −0.293

Sd (deep soil moisture) 48.52 −34.36 85.98 −0.40

Sr (run-off) 0.98 −0.16 0.10 −1.60

TWS (terrestrial water storage) 59.33 −42.65 120.21 −35.48

Note. RMSE = root-mean-square error; TWS = terrestrial water storage; OL = open loop.
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Figure 4. RMSE box plot of all the combinations and the best combination for each of the ICUS (a, b) and observation
operators (c, d). For clarity, different scales were used for the vertical axes. ML/day = 106 L/day.
RMSE = root-mean-square error; ICUS = Increments Calculation and Updating Strategy; TWS = terrestrial water storage;
PAO = previous absolute value; SVS = state variable status.

map of the unperturbed precipitation used to generate the synthetic truth and used in the OL and DA runs
is depicted in Figures 1b and 1c. It can be seen that the OL and DA have less precipitation than the truth,
which is expected to cause a negative overall bias in the estimate of the state variables, including the TWS.
Furthermore, as the precipitation noise was added multiplicatively, a higher difference emerges in the central
parts. Consequently, higher errors in the model outputs are expected for this region. It is expected that the
model systematically underestimates the TWS, especially in the central region. This underestimation is not
just limited to the TWS. As shown in Table 3, the values of all TWS components are lower for the OL run than
for the truth. The highest negative bias and RMSE belong to the deep soil moisture, which had the highest
storage capacity and consequently the highest contribution in the forming TWS.
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Figure 5. (a) Average performances of the different DA approaches when assimilating the ideal TWS absolute value
(formed by adding an unbiased and accurate baseline to the TWS anomalies) and the TWS changes. (b) TWS error
histogram from the OL and the best EnKF structures for TWS change assimilation (ICUS4.3, H3, PAO2, and SVS2) and
TWS absolute value assimilation (ICUS4.3, and H3). (c) Results of the use of the best combination of assimilation
structures, when assimilating TWS absolute values (ICUS4.3 and H3) or TWS changes (ICUS4.3, H3, PAO2, SVS2). The
noise-free observation is the value of TWS absolute values before adding the noise in the observation synthesizing
process. DA = data assimilation; TWS = terrestrial water storage; OL = open loop; EnKF = Ensemble Kalman filter;
ICUS = Increments Calculation and Updating Strategy; PAO = previous absolute value; SVS = state variable status.

4.2. DA Results
To optimize the EnKF structure, five different structural variables were defined, as indicated in Table 1. How-
ever, it should be noted that the PAO and SVS are not applicable when assimilating the TWS absolute value.
Therefore, in total, 40 feasible structures for the assimilation of the TWS absolute value and 160 (4 × 40) fea-
sible structures for the assimilation of the TWS changes were tested. In this section, the effect of employing
different options of the structural variables was analyzed.
4.2.1. ICUSs
As explained in section 3.3.2, 10 different ICUSs were tested. These were formed by two variables: (i) the time
step(s) that was (were) used to calculate the increments and (ii) the updating strategies. In Figures 4a and 4b
the top panels represent the RMSE values obtained from all trials of all possible combinations (16 × 12 values
for each box plot in the TWS absolute value assimilation and 4×12 values for each box plot in the TWS change
assimilation) that used each particular ICUS. The bottom panels show the results of the 12 trials for the best
combination of the structural variables. This best structural variable is stated underneath the box plots.

SHOKRI ET AL. 8943



Water Resources Research 10.1029/2018WR022785

When TWS absolute values were assimilated into the model, all structures performed better than the OL
(Figure 4a). However, some of the ICUSs showed higher potential for reduction of the RMSE values. ICUS4.3
had the best potential to improve the performance of the EnKF (Figure 4a). This ICUS behaves more similar
to a smoother. It means that the increment is calculated for each time step and then directly applied to the
state variables of the same time step. The problem with this ICUS is its huge number of state variables and
consequently the high computational demand of the assimilation procedure. Because the assimilation algo-
rithm requires temporally uncorrelated observation errors and the smoother assimilates a single observation
into the model during each month, Girotto et al. (2016) concluded that the application of smoothers in the
GRACE assimilation is inappropriate. However, the results described here show that the ICUS4.3 provides the
best results, at least for this synthetic problem.

The bottom panel of Figure 4a shows that, except for ICUS4.3, all ICUSs show a relatively similar potential
to improve the model results. However, some ICUS provided more consistent results, as evidenced by the
smaller spread in the results of the 12 trials for ICUS1.1, 1.2, and 2.1. Regarding the assimilation of the TWS
changes (Figure 4b), although important information (the estimate of the baseline) was removed from the
assimilation process, most of the ICUSs improved the performance in comparison with the OL. Even in the
case of assimilation of TWS changes, ICUS4.3 led to the best performance, while ICUS1.1, 1.2, and 2.1 showed
similar RMSE values. Moreover, it can be seen that using the best structures, the RMSE values were lower for
the DA runs than the OL for all of the ICUSs. However, some of the ICUSs led to an increase in RMSE.

Based on the results of both the observation types (TWS changes and absolute values), those ICUSs that
update the state variables using the increments from the same days had the highest reliabilities (i.e., ICUS4.3,
1.1, and 2.3). Except for these structures, ICUS1.2 was the only structure showing results similar to the best.
However, its results were still slightly worse. This ICUS breaks down the increments of the first day and updates
the state variables by adding on gradually during the second run.

For each structure, the RMSE and bias average of all 12 trials were used in this experiment (Figure 5a). When
ideal estimates of the TWS absolute values (i.e., TWS absolute values which are estimated using an accurate
baseline) exist, assimilating those is preferable to assimilating the TWS changes. However, without such ideal
estimates of the TWS absolute values, assimilation of the TWS changes can still provide an acceptable out-
come if the structure of the filter is set correctly. As can be seen in the figure, the trend line in the case of TWS
changes assimilation is shifted toward the lower left as compared to the TWS absolute values trend line. This
indicates that the TWS change assimilation systematically reduces the RMSE more than the bias. One reason
for this outcome is that the assimilation of TWS absolute values the EnKF had information about the long-term
TWS average which was not introduced to the TWS change assimilation. As this information is directly related
to the bias, the EnKF with absolute values can remove the bias more efficiently.

4.2.2. Observation Operator
Another structural variable is the observation operator, which had four alternatives. Figures 4c and 4d show
the box plot of the performance for several structures using each observation operator alternative for the
assimilation of TWS absolute values (Figure 4c) and TWS changes (Figure 4d). In these figures the top panels
represent the RMSE values obtained from all possible combinations (40 × 12 values for each box plot in the
TWS absolute value assimilation and 10×12 values for each box plot in the TWS change assimilation) that used
each particular observation operator. The bottom panels show the RMSE values of only the best combinations.
All experiments showed a better performance than the OL, and RMSE was slightly lower when H3 and H4 were
employed (Figure 4c). As mentioned in the figure, the best ICUS for the H2, H3, and H4 was ICUS4.3 and in the
case of H1 the best performance was observed for a combination with ICUS1.1. The combination of H1 and
ICUS4.3 had a very similar performance as the combination of H1 and ICUS1.1.

In the case of the TWS change assimilation a different pattern was observed. As depicted in Figure 4d the per-
formance of the assimilation was more sensitive to the selected structure. Therefore, in this case it is crucial
to correctly select the structure. As can be seen in the top panel, using only the best observation operator
alternatives (i.e., H3 or H4) and not optimizing the other structural variables, one can expect to have results
with improved performances. However, there is a chance of producing worse results. Conversely, a combina-
tion of the best observation operator and optimal other structural variables could ensure an improvement in
the results. These optimum settings were a combination of ICUS4.3, PAO2, and either SVS1 or 2. Comparing
the results obtained from H3 and H4 shows that they led to a similar performance as a result of their similar
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Figure 6. Temporally averaged RMSE of TWS, surface, shallow and deep soil moisture and runoff, from the OL and the
selected DAs approaches using TWS changes (ICUS4.3 and H3) and TWS absolute values (ICUS4.3, H3, PAO2, and SVS2).
RMSE = root-mean-square error; TWS = terrestrial water storage; OL = open loop; DA = data assimilation;
ICUS = Increments Calculation and Updating Strategy; PAO = previous absolute value; SVS = state variable status.
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Figure 7. Impact of the assimilation of TWS absolute values or changes on the different TWS components, using the
optimal assimilation strategy (combination of ICUS4.3 and H3 for TWS absolute value and combination of ICUS4.3, H3,
PAO2, and SVS2 for TWS change assimilation).

structures. However, H3 provided a slightly wider range of RMSE values. This means that although using H3
provided a better RMSE than H4 on average, there is a chance of getting worse results.

When applying the optimal structure, all observation operators led to an improvement in the model results.
In the case of using H2 and optimized other structural variables, the expected RMSE values were reduced
as compared to the OL, and in the best case the RMSE was similar to the results obtained with H3 and H4.
However, its performance was more uncertain compared to the performance of H3 and H4. This means that
one can expect to gain some improvement in the results when using H2, but this improvement will not be
as consistent as when using H3 and H4. The expected improvement using H1 along with an optimized set
of other structural variables was the worst among the H alternatives. However, it was still better than the OL.
Contrary to when using H2, even the best model performance was not comparable to the results when using
H3 and H4. It can be concluded that the best observation operators were either the H3 or H4. As both of these
observation operators predict the TWS as an average of multiple days, their resulting observation predictions
and consequently their effect on the final products were similar. With a closer look at the RMSE values, it was
observed that the differences between the performances of the H3 and H4 were not significant (i.e., less than
0.2-mm difference in the average RMSE).

Among the four best ICUSs, the best combination using ICUS1.1 and ICUS1.2 was formed by H2, PAO2,
and SVS1 and the best combination of ICUS2.1 and ICUS4.3 was formed by H3, PAO2, and either SVS1 or 2
(as mentioned previously, the SVS did not have a significant effect on the results). This means that for the
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assimilation of the TWS changes, if the increments are supposed to be calculated just for the first day of the
month (ICUS1.X) the best observation operator is H2 (consider the TWS of the last day of the month as the
representative of the month) so that the TWS changes are calculated as the difference between the last day
of the previous month and that of the current month. Moreover, the results showed that PAO2 is preferable
to PAO1. It means that in order to convert the TWS absolute values into TWS changes, the best approach is to
use the average of all members’ TWS. The low sensitivity of the results to the SVS also indicates that neither
of the state variable sets, from the forecast or update step, was superior to another.
4.2.3. Results of the Best Combinations
Some detailed results of the best DA approaches are presented and discussed in this section. Figure 5c shows
the spatially averaged truth and simulated TWS from the OL and the best DA approaches when assimilating
the TWS absolute values (top panel) and TWS changes (bottom panel). In this figure, the whiskers represent
the observation standard deviation. As shown in Figure 5c, for the current experiment the DA can correct the
errors and this correction was more effective when ideal absolute TWS observations were assimilated. In the
case of assimilating the absolute values, the DA TWS estimates were in general between the observations and
OL TWS estimates and sufficiently close to the truth. In the case of DA using TWS changes, mostly the TWS
estimates were improved. However, in only a few instances (i.e., near May 2010) the DA estimates became
worse than the OL ones. Another point that should be noted is the larger errors between the simulations (DAs
and OL) and the truth near the peaks. This can be explained by the model’s tendency to overestimate the
drainage during wet periods. However, the results show that the assimilation procedure can partly correct
these errors.

The top panel of Figure 6 investigates the spatial performance of the selected DAs. This figure shows the
temporally averaged RMSE of the TWS for the OL, the best DA strategy for assimilating the TWS changes and
the best DA strategy for assimilating the TWS absolute values. As the top panel of Figure 6 shows, the averaged
RMSE at the central area is significantly higher than for other regions of the study area. The main reason is the
higher precipitation and consequently the higher variability of the perturbations in that region. As can be seen
in the top panel of Figure 6, the errors were partially detected and removed by the DA methods. Moreover,
the accuracy of the simulation in the eastern and western area was also improved through the DA. To provide
a better understanding of the TWS estimate errors using the optimum DAs, the TWS error histograms are
shown in Figure 5b. These errors are the differences between the simulated (OL and DA) and the truth per
pixel and time step. The errors of the OL estimates are strongly left skewed, which indicates the OL negative
bias. By applying the optimum DA, both the skewness and dispersion of the OL estimate were reduced but
this reduction was less significant in the case of assimilating the changes.
4.2.4. Vertical Disaggregation
One of the objectives of the TWS assimilation is to update the storage values of all the different TWS compart-
ments. Figure 7 shows the scatter plots of the bias against the RMSE of the DA approaches and the OL for the
different components of the TWS including: surface soil moisture, shallow soil moisture, deep soil moisture,
and run-off. Figure 7 shows that the most significant improvement occurred in the deep soil moisture followed
by the shallow soil moisture. Run-off was slightly improved by the DA, while the surface soil moisture esti-
mates were slightly degraded. A spatial illustration of these differences in the accuracy of the estimates can be
seen in Figure 6. Among these components, the surface soil moisture estimates were either not improved or
degraded (i.e., bottom left of the middle map). The shallow soil moisture (second row) and runoff (fourth row)
estimates were slightly improved mostly in the region with a higher degree of error. By up to 52% and 80%
correction in the RMSE and bias compared to the baseline simulation, the estimates of the deep soil moisture
improved the most among all other components. The main reason of these differences relates to the contri-
bution of each storage in forming the TWS. As represented in Table 3, the deep soil moisture had the strongest
contribution, followed by shallow soil moisture. This finding justifies the approach of Tian et al. (2017) in jointly
assimilating SMOS-derived surface soil moisture and GRACE-TWS to compensate for the inability of GRACE to
improve the surface soil moisture.

5. Discussion
To determine an optimal structure of the EnKF to assimilate the GRACE coarse TWS retrievals, five differ-
ent structural variables were identified and evaluated. For this purpose, a generic EnKF framework, with
capability of implementing different structural variables, was developed. Using a synthetic experiment, the
different EnKF structures were compared. The structural variables were the ICUS (10 alternatives), observation
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operator (4 alternatives), observation type (2 alternatives), PAO (2 alternatives), and SVS (2 alternatives). In
total, 200 feasible structures (160 when assimilating TWS changes and 40 when assimilating absolute values)
were tested. The impact of employing the different options were subsequently analyzed. The reason for the
smaller number of TWS absolute value tested is the fact that the PAO and SVS were not applicable in this case.

This study has a number of limitations. First, we used an off-line model forced with unperturbed meteorolog-
ical data as synthetic truth. In reality, a considerable amount of uncertainty drives from the model structure.
This uncertainty cannot be fully replicated when the same model structure is used for DA/OL. In our exper-
iment, this shortcoming was partially mitigated by using two independent good-enough parameter sets
found by the PRIM-PE method. Second, our study focused on a small subbasin in Australia without signifi-
cant snowfall and used a 3-year simulation period. Additional experiments would be required to determine
whether the different structures show similar differences in performance for other regions, period duration,
resolution, or simulation models. We argue that the comparisons made here are still valid as all the structures
were compared for an identical situation (even identical random numbers). In this study, a synthetic problem
was used to compare different EnKF structures. While those results were informative, it should be noted that
there is the possibility that the DA results change marginally with structure in a real-world application due to
different conditions and/or the assumptions of this study. However, considering (1) the fact that the model
was calibrated using real observations and used real input data and (2) the strong improvement in the per-
formances of the best DA structures, the conclusions are expected to remain unchanged when implemented
in a real-world scenario.

Currently, different GRACE TWS solutions using different gravity models and resolutions have been developed.
In the current study the observations were considered to be similar to the official GRACE mission solutions.
However, other solutions differ in terms of error correlation and resolution and the impact of these could be
investigated separately.

When an ideal unbiased absolute TWS was used as the observation source, all the DA structures could improve
the TWS estimate in comparison to the OL estimate. By using different DA approaches, bias and RMSE were
improved in the range of 55–80% and 40–60%. This shows that, although all the structures improved the
estimates, there was a considerable difference between different structures. Therefore, selecting an optimal
DA structure is beneficial. As for the current problem among all tested structures the combination of ICUS4.3
and H3 had the best performance. This combination suggests that the best estimates for this case can be
obtained using an approach which behaves more similarly to a smoother and observation operator which
estimates the observation as the average of multiple days (5, 15, and 25). H4, as another observation operator
that averages the TWS of all days in the month, had a very similar result to H3. This can be explained by the
fact that in both H3 and H4, a number of days contribute similarly to the estimation process. It is also observed
that among ICUSs, those that update the state variables of different days using the increments from the exact
same days had the highest reliabilities in producing accurate estimates. Except for these structures, ICUS1.2
(which breaks down the increments of the first day and updates the state variables by adding it gradually
during the second run) was the only structure that had acceptable results.

Assimilating the TWS changes rather than absolute values of the TWS was proposed as an alternative solu-
tion when an unbiased estimate of absolute TWS is not available. Using this approach, most DA structures
still outperformed the OL, but their results were not better than those from the assimilation of the ideal abso-
lute values. If an unbiased estimate of the absolute TWS exists, assimilation of the absolute values leads to a
better performance. Otherwise, there are still benefits in assimilating the changes. When the TWS changes
were assimilated, among the observation operators, H3 and H4 had the best performances, and the best ICUS
was ICUS4.3. The combination of ICUS4.3, H3, PAO2, and SVS2 showed the best performances with around
40% and 28% improvement in the average bias and RMSE. Another finding regarding the assimilation of TWS
change is that, if the increments are supposed to be calculated just for the first day of the month (ICUS1.X)
the best observation operator is H2 (consider the TWS of the last day of the month as the representative of
the month). In this approach the TWS changes were calculated as the difference between the last day of the
previous month and that of the current month. Moreover, in order to convert the estimation of the TWS abso-
lute values into TWS changes, using the average of all members’ TWS as the estimate of the previous month
TWS led to more accurate results. Also, the low sensitivity of the results to the SVS indicates that neither of
the state variable sets, from forecast or update step, is superior to another. Assimilating the TWS changes
may seem unrealistic (which is why the assimilation of TWS absolute values outperforms it). However, it still
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improve overall estimation results. This is where a trade-off emerges between accepting the error from adding
an estimated baseline or using the TWS change assimilation approach.

The largest impact of assimilation was on the largest storages. In this case the deep and shallow soil moisture
were improved the most. Also, some improvements were observed in the runoff estimates. The surface soil
moisture was the only state variable that was degraded slightly by all the DA approaches. This justifies the
approach of Tian et al. (2017) in jointly assimilating the surface soil moisture and the TWS.

Beside the accuracy, a key characteristic of the DA approaches is their computational burden. This becomes
more important when the spatial resolution of the model and/or the number of state variables per pixel
increases. The DA structures that were applied in the current study had different computational complexi-
ties, and the main controller structural variable was the ICUS. By increasing the number of days that are used
in the increment calculation procedure, the memory demand increases. From this perspective, the ICUS that
used just one day was the most computationally efficient. Regarding ease of implementation, the ICUS with
the third strategy of increments implementation (ICUSx.3) was the easiest to implement, because they need
least effort to apply the filter, as there is no need for a second run and reinitializing.

6. Conclusions
This study undertook a synthetic experiment to assist in designing an optimal GRACE TWS DA approach more
insightfully, by gathering and comparing all existing EnKF structures to assimilate the GRACE TWS into the
land surface models. The results suggested that all structure could improve the results when absolute TWS
was available, but assimilating the changes is an alternative that can retrieve the improvement partially even
without having an accurate baseline to convert the GRACE TWS anomalies to accurate TWS absolute values.
Moreover, results showed that even using identical observations, the performances of different EnKF struc-
tures considerably vary. Therefore, optimizing the EnKF structure is beneficial for assimilating the GRACE TWS.
Assimilating the TWS had a significantly larger impact on the storages with a greater contribution to the TWS.
Therefore, to improve the storages with low capacity (e.g., surface soil moisture), assimilating the TWS was
not sufficient.

This study could be followed up in a number of different ways. Even though they were outside the scope of this
study. Even though the synthetic problem led to a comprehensive insight from different points of view into
the EnKF structures, it imposes some sources of uncertainties. Partially verifying these results using available
data in a real-world problem should be considered in future studies. Another limitation of this study was that
the study was performed for a specific region and simulation model. Therefore, other regions and simulation
models can be investigated in the future.
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